

Feb 19-8:47 AM

Nov 21-7:32 AM

has uniform Prob. dist with the maximum wait time of 12 minutes.

1) $P($ Your wait time exceeds 10 minutes)

$$
P(x>10)=(12-10) \cdot \frac{1}{12}=\frac{2}{12}=\frac{1}{6}
$$

2) find the wait time, round to whole minute, that separates the Hop 10% from the rest.
$(x-0) \cdot \frac{1}{12}=.9$

then Solve for x.
$x-0=12(.9)$
$x=10.8 \quad x=11$
10% chance that Your wait time
exceeds 11 minutes.
\qquad

Nov 21-7:53 AM

Standard Normal Prob, dist:

1) use $Z, P(z=c)=0$
a) Graph is bell-Shape, Symmetric with total area $=1$
2) Mean $=$ Mode $=$ Median
3) $\mu=0, \sigma=1$
$P(a<z<b)$

How to find it:
and VARS normaledf(L, U, μ, σ)
Drawing, labeling, Shading, and full TI command
required.

\qquad
\qquad

Nov 21-8:09 AM

Find a Z-value round to 3 -decimal places, that
Separates the top 1% from the rest.

Nov 21-8:28 AM

\qquad
\qquad
\qquad
\qquad

Nov 21-8:37 AM

Normal Prob. dist: :

1) use $x, P(x=c)=0$
2) Graph is bell-shape, Symmetric with total Areal.
3) Mean $=$ Mode $=$ Median
4) $\mu \& \sigma$ are given in the problem.
$P(a<x<b)$
How to find it:
normalcdf (L, U, μ, σ)

Nov 21-9:09 AM
find x value, Round to a whole number, that Separates the top 5\rangle. from the rest. $x=$ invNorm (Left Area, μ, σ)
$x=\operatorname{invNorm}(.95,74,6)$

$$
\begin{array}{ll}
=83.869 & \begin{array}{c}
\mu=74 \\
\\
\approx 8=6
\end{array} \\
\approx 4 &
\end{array}
$$

Nov 21-9:20 AM

\qquad

Nov 21-9:35 AM

